Modified soil hydrological schemes for process-based ecosystem model Biome-BGC
نویسندگان
چکیده
منابع مشابه
BIOME-BGC simulations of stand hydrologic process for BOREAS
BIOME-BGC is a general ecosystem model designed to simulate hydrologic and biogeochemical processes across multiple scales. The objectives of this investigation were to compare BIOME-BGC estimates of hydrologic processes with observed data for different boreal forest stands and investigate factors that control simulated water fluxes. Model results explained 62 and 98% of the respective variance...
متن کاملReimplementation of the Biome-BGC model to simulate successional change.
Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation t...
متن کاملSoil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis
[1] We conducted a modeling study to evaluate how soil hydrological properties regulate water and carbon dynamics of grassland ecosystems in response to multifactor global change. We first calibrated a process-based terrestrial ecosystem (TECO) model against data from two experiments with warming and clipping or doubled precipitation in Great Plains. The calibrated model was used to simulate re...
متن کاملSimulation of Forest Carbon Fluxes Using Model Incorporation and Data Assimilation
This study improved simulation of forest carbon fluxes in the Changbai Mountains with a process-based model (Biome-BGC) using incorporation and data assimilation. Firstly, the original remote sensing-based MODIS MOD_17 GPP (MOD_17) model was optimized using refined input data and biome-specific parameters. The key ecophysiological parameters of the Biome-BGC model were determined through the Ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hydrological Research Letters
سال: 2016
ISSN: 1882-3416
DOI: 10.3178/hrl.10.15